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Robert A. Clark
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Los Alamos, New Mexico 89745

I, INTRODUCTION

Traditional Lagranglan hydrodynamic codes for time dependent, compressible,
multimaterjal problems in two dimensions use the same general method. A
wagrangian mesh is defined, which moves with the fluid and this mesh defincs a
set of Lagranglan cells. The mass in each cell remains fixed and the motion of
the mesh delermines the volume and nence th2 density of each celi. These melnods
work well until the mes’ becomes distorted dur to shear or turbuvlence. Large
distortions cause computer codes to qulickly grind to a halt,

The usual solutlon to distortion is to "rezonc" Lthe mesh, Here we move Lhe
mesn points artificially so as to reduce distortions an¢ then map the quantities
from the old meah to the new. Thisg results in unwinted diffusion of mass, momen-
tum and cncrgy throughout the mesn., Even with rezoning, fow Lagrangian codes can
handle morc than limited distortions. Recontly, what we c¢call "Frece=Lawranglon"
codes have been daveloped speceifically to handle large distoritlons, These pedoer,
in addition Lo adjusting Lhe mesh points, can rcconnect mesh pointa, Lhus o»cal-
ing new cells, While Free-Lagranglan codes can handle virtually any alstortion,
they nre aven more diffunive Lhan rezoners.

We aro tryiug a difforent approach Lo the problem, We abandon the lfdea off
Lagrangian cells entirely. In the next section we will discuss how the conscrva-
tion equations can L golved dipectly wilhoul resorting to Lagrenglan oolls,
NexU we will glive some oxamplos of calculations using Lthig method, Finally, we

will give dotiafls of the calculational method presenlly befng used,



II. SOLVING THE CONSERVATION EQUATIONS

The equaticns we are trying to solve can be written

%—cp--pa-ﬁ . [(2.1]
g—tﬁ-—%ﬁp [2.27
%--%V -8 [2.3]
P = P(p,e) [2.4]

where represents the vector velocity, p the density, e Lthe specific int-rnul
energy and P Lhe pressure of the fluid. Equation [2.1] exprecsscs conservation of
mass, [2.2] conservation of momentum and [2.3) conservation of cnergy. The
Lagrangian timec derivative, l.c., the derivative following the fluid, is indi-
cated by %E

In a standard Lagranglan calculation only Fq. {2.27], the momcnilut cquation
is solved dircctly. The procedurc i1s to integrate (P.2] over some region of
spacer. to arrive at the aceeleralion of euch mash point. The mesh pointy ore then
moved and the new cell volumrs along with the i'ixed coll mass determins Lht new
denslity, henee, indireetly solving Ea. [2.1). The assoclated PAV work term up-
datos the ccll cnergy and indirectly solves kEq. [2.3) and Lthe new preasurce s
obtained from Lthe equation of state [2.4]). .

We propose Lhe followling: Instead of Lagranglan cells, we Lthink of a sct of
Lagrangian polnts wihich are emboddud in and move with the fluld., There 18 no
manys yssceiated with Lhese points. They ave justy, moving tracoer polnls al whick
wo Will altompt Lo keep track off Lthe veloaeity, dansivy, encigy. and pressure of
the fluld. 1In our later examplo calculationd we will show polnt poaltion:

vartous Limes In the oaloulation, AL oach of these poinls, we khow Lhe denaily,



energy and velocity of the fluid, but we do not associate any particular maas
with the point.

Looking now at Eq. [2.1], we notc that to approximate the time integral of
the cdensity change from time t to time t + &t we necc an approximation to ﬁ . ﬁ
at that point. To solve Eq. [2.2], wo need an approximation for VP and for rz.3]
we again necd ¥ . §. To obtain these, we select a set of "representative"
nelghbors. We then make a finite difference approximation to 3? and 3 . ﬁ. using
these neighbors, and update p, ﬁ and e at each point. Each point is tLhen moved
the distance ﬁ 6t and onc time step is complcted.

Al the next time step the sclection of a set of "representative™ neighbors
may change, but this docs not requirc any sort of ro-zapping ol variables. It
only means that a different sct of points will be used in the naxt finite cif-
ference approximation to 3 . ﬁ and 3?. Large distortions in the flow will
produce frequent changes in neighbor selection, but since there are no cells to
distort and no re-mapping to be done Lhe calculalion procceds from cycle to cyeie

with no difficulty.

111, SOME EXAMPLE CALCULATTIONS

3.1 Here we will give threec examples of calculations performed by Lhrn code
HCRO using the frec Lagrangian method descoribed herein. In the first test
problem, the initial condition 1s a saphare of perfoct gas «4ith a gamma of 5/713.
The gas is dlvided inte four regions as sceen In Fig. 3.1. Proessurcs art {n

megnburs, denczity In gm/ce and dimension in owm.

rig. 3.1



The high pressure in region IV will drive a spherical implosion which will
greatly compress regjon 111, 1I, and particularly I. There are two challenges to
this problem, the first is to maintain a spherical ball wnile running thec cal-
culation in cylindrical (r,Z) geometry. Six snapshots ol region Il1 are shown in
Fig. 3.2. Region I i3 interior to region I1. The minimum volume of region 1 oc-
curs in the fifth snapshot after which region I begins to expand., Wwe ran 1002
calculational cycl:s with 73 points in the radial direction and 64 points cover-
ing 189%° of angle. The left half of the snapshot is a reflection of the rignht

half which was calculated.

00O oo

t=0.0 t=.049 t=.099 t=.150 te.185 t=.289

Fig. 3.2

The secord challenge 1s the accuracy of the solution. For comparison pur-
poscs we ran a standard one-dimension Lagrangian code using 8)J zones, 16D zoncs
in each reglon. In Figs. 3.3.a, b, c, and d. We have plotted tne averawec den-
sity and average specific internal energy in regions I and 11 as calculated by
HOBO with 73 points In the radial direction and the onc-dimension Lagranglan o¢al-
culation with 200 points., We fecl the agreement to be quitc good. Onc notable
difference is the time at which minimum volume i3 reached. HORO is slow by about
.0075 usec or 4% of the problem time at that point, Since averdage density and
encrev are integral quantitics we have plotted one of the variables as a function
of radius in Fig. 3.4. We chose radial velocity, but the agreement {n all other
variables i{s very similar. The plots are from slightly different times to com-
pensate for the time shift just mentioned. The 1D Lagrange plot {e at 2,12% usco
and the HORO plct is from 2.2% uysec. Apart from the {nability of the morce

coarscly zone HONO to resolve the shock front alL Lhe radius 1.2 com we feel the



agreement is excellent.

The time chosen for the plot is late in the calculation

when region II has expanded almost back to its original volume.
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. 3.2. For our second test problem we have chosen a Meshkov instability based
on the geometry used in one of Meshkov's experiments, The initial concditions are
shown in Fig. 3.5. A piston driven shock {s driven through a reglion of air and
then helium. The air to helium density ratio is just over 7. There is an
initial perturbation in the air -- He interface which grows with time after the
shock passes through the interface. In Fig. 3.6 we plot several snapshots of tne
Lagrangian point positions in the air (the He is not plotted). For comparison
purposes we ran the same problem in a two-dimensional Euler.ian code with the cell
size similar to the point scparation used in HOBO. In Figs. 3.7.a and b, we com-
pare the size of the perturbation as it grows in time. In 3.7.a the initial
perturbation, §, is .2 cm and in 3.7.b it is .4 cm in width. Thu agrcement be-

tween the two codes 1s exccllent.

3).8cx 12.6%%22 14.9:n
alr Yel.a air vel.. He y=1.6)
P=1.828%¢ -3 Pal.02225 -3 | S =t
o=1.795110 zi.3%uld zel.gherld™
t=1%.3; .. “w),

r
Fig. 3.5

t=6.0. t=855,

Fig. 3.6
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Figs. 3.7.a and b

3.3. Our third test problem is the penctration of a concrete plate by a
steel roa moving at an injtial velocity of .2134 cm/uscc. The rocd is 9.075 cm in
diameter and 45 cm in length. The concrete is 50 cm thick. In Fig. 3.f we show
3{x snapshots of the rod penetrating the concrete. Incomprcssible thoory
predicts a constant time rate of change in the length of the steel roa. Thu
sound speed in the rod is .4545 cm/uysec and (‘.r/c)2 = .22, 80 this problerm shcuild
not be too far from the incompressible solutjon. As ls shown in Fig. 3.4, the
rod length as a function of time matches the incompressiblc theory very weli.

Calculations with a two-dimensional Eulerian code produced an almost igccntical

result.
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1V. THE FINITE DIFFERENCE SCHEME

4,1 The pressure gradient

We want to approximate Up at the poirit k where neighbors are the points k1.
k2 cne knmax' Our neighbor selection guarantees at least three neighbors for

each point, the average 13 siy and there 1s no maximum numbcr. Clearly there are

many methods that could be used to approximate §P. The following was arrivec at

through much trial and error and appears to work very well.

.kz Ikl

P2 P,

i

k3. P3 P5 .x5
b
Py
.k“

Fig. 4.1

Consider point k In Fig. 4.1 that has five nelghbors. We construct a

polygon with vertices midway between the point and each of its neighbors. Tne

kf.O

fs a

position of the nth vertex is ;n - 1/2 [;(k) + ;(kn)] znd the vector from X

Y
X
n

;n is denoted by o;n - - ;k‘ The pressure at the nth vertex, Pn'

weighted average of P(k) and P(kn) (vo0 bce described in scction 4.3). We assume a
linear pressure distribution along each edge of the polygon and integratc the

pressure over the surface to get a force F. We assume a constant density Py over

the polygon to calculate a mass M. Then we have %E U ; . Now let ;.2 ;R .
d
n
ca;n and the pressure at the nex vertex is P. - P * e(pn - P,). Now F and % are

functions of e and we oompute

/0



lim F(¢)
e+0 M(e)"®

The resulting expression for the preassure gradient is

)} - ) _
X n Pn (Gyn—l 6yn¢1) vy n Pn (Gxn+1 5xn-1)

vp

K" (4.13
Gyn - 6yn+1 cxn)

E (8%

where x and y are respectively the urnit vectors in the x and y directions and

> -
6xn - Gxn X + 6yny.

If the preceeding is done in c¢ylindrical geometry, the result is jidentical for VP
with x and y replaced by r and 2. It 1s of interest to notec that if the %15 is
not taken, the result does not give a spherically symmetric presaure gradient in
a spherically symmetric problem using cylindrical coordinates,

There is an easier way to arrive at Eq. [4.1] althougn the method Jjust
described is how we originally aerived it. Since it takes only three points to
describe a plane surface, each zonseculLive pair of neighbors along with the point
k defines a pressure plane to first order. If we assign a welght to eazh of
thase approximations wec have an approximation for 3P. If the weighting function
is the arca of the trilangle formed by the three points, the result is the same as
Eq. [4.1]. We have tried other weignting function, 0 and sin? whorc O i3 the

angle between 5;n and 6;n both work fairly well, but area weighting apnears to

+1

be best at this time.

4.2 The divergence of the velocity field

« Uy X +

In cartesean coordinates we reprcsent the velocity at the point k by ﬁk K

vk Y. The divergence of the velocity field can be expressed as Vel e

<] =
Iw
(24 £

/I



wnere V 18 the specific volume of the fluid. Referring back to Fig. 4.1 the
specific volume of the constructad polygon is proportion to the area of the

polygon given by

A2 T (X, ¢ %) (v, - ,)

Hence we can write

) - _
1 25 n (un+1 * un) (yn+1 yn) ! (xn41 * xn) (vn+1 Vn) (4.2
A ot _ o
E xn+| yn yn+l xn

Equation 4.2 can be derived directly from Eq. 4.% by noting that 4.1 implies

a definition for the operators %; and %? and when these are applied Lo 3 . ﬁ - du

IX
+ %% Eq. [u.2] is obtained. Thus, we have in effect Lhrec ways of derivinc the

same finite cifference approximation to Lhe operators L and a_ In cylinc~icai

ox oy’
coordinates we express thc divergence of the velocity fleld as

- 1 9 av u du av
Voﬁ.;ﬁ(ru)i'-a—z--F#F#H

where %; + %% is calculated by Eq. [4.C) with X,y replaced by r,z.

4,3 The midpoint pressure and velocity

In 4.1 we use a prossure Pn which i3 midway between polnts k ana kn. This 1s not
a numerical average. Conslder the one-dimensional problem depleted In Flg,

4,2 .4.
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What pressure should we use for P; - P:ﬂ? If we usc the average, 1/2 (Pl +
Pz) the acceleration at i+1 willi bc much greater than at i. However, wc know
that the velocity should be continuous across the disconLinuity. Given equal

zoning the boundary pressure which gives equa. accelorations to points { and i+1

»
18 Py = (P pyuq * Pryypg)ilog ¢ 0p,,).

It ocan be shown that the resulting finite differcnce approximation Py * (P; -
P;)lﬁx is second order accurate when the donsity is continuous.

Now consider Lhe problem depicted in 4,2.b. Here wc have a heavy matcerial
on the loft moving into a very light material on the right. Whal should we usc
for U: - UIH? If we usc the avorage, 172 (U, + U“‘). there will be o very
large rate of compression in region 2 which is lncorrect becausce region 1 is
moving into a near vacuum. The quantity that should be continuous 183 pressure.
The veloclity which causes cqual presaure incrouascs al points { and i+ i v -
[(pcz)1 u ¢ (pc;!]h‘ uh‘]f'l(pcz)l . (pc?)lﬂ]. This assumos the sound spced ¢
is a4 constant. Aguin {t can bec shown that the resultant finite dif'fesoence apr

proximation to U,l is socond ordoer accurate if p(:? is continuous.

1o



The midpoint pressure used in Eq. [4.1] are invcrse density weighted ana the

midpoint velocities in Eq. [4.2] sre pc2 weighted,

4,4, The artificial viscosity

An artificial viscosity, q, is added to the midpoint pressure in Eq. [4.1]. It

18 quadratic inform. Let Uc be the closing ratc between points k ana Kn. j.c.

Then let qk - azpkuz and qk - B2pk Uz. In the spirit of paragraph 4,3, wc¢ in-
n n

verse aensity welght the two to get our expression for the midpoint q, i. c.,

2,2 .
/ (l/pk + Vo, ) (L.2)

q. = 22
n c n

In all of our éexample calculations in section < we usad az = 5,76, low w¢ must

fold q into the internal cnergy cquation in which we need to avaluatce (P + q)ﬁ-ﬁ.

Qur approximation for V-U is glven by Eq. [4.2]). The g term {8 brcuyht Inuice

the summation so tha}

) . - ) -
n (Pk qn)un(yn-l yn+|) * n (Pk * qn)vn('nﬁl xn-i) (o)

(0 + qlel = ‘
% Xnet ¥ ” Ynat %y



4.5. Prevention of density striations

Ti:e method so far described has one remaining difficulty. By having all of the
variables centered in space it becomes Impossible to detcet a sawtooth type wave

as depicted in one dimension in Fig. 4.3.

2 | | ' g L] L
X2 Xi-1 Xy i+l Xi42
Fig. 4.3

If such a wive dovelops It cannol be detocted by a caniered diffarenca
scheme., To correct for Lhis, we define an artifleial veloeity u' as depletoed in

Flg. 4.3.b. We use our calcuiated VP to gxtrapclate from point k Lo point wn
giving PoXt ap. « (X - R )« & P.. Ir the pessure flela fs lincar then pSX!
K K kn K k K

n n

- Pk . If they aro not equal, there 1s o gecond derivative in the pressure field
n

whioh wa attempt to reduce. Physicoally what should happen s a velocity would be

produced al the midpoint us indicated In 4.3.b., which would decomproass polnt |

ox\

pk - l'k .
n n

by »
We choue Lo usa u! b" &P/pe. Woe then use pe welghting between polnty k anc K

and compruss point [+1, This velocily must be propertioned Lo §P =

n
to arrive at



2
b“ 9P (ck ¢ c, )
u - c2
Pk “k

[u.4]

n
2
+ Ck

P
l"n n

ua is added to un in 2alculating 3-3.
2

In our present calculations b = 1.44, We further limit Iu'n| to be leas

than 2C% of the maximum of (C,, C,_ ). In practica, u' is a very small term, but
n

an absolutely necessary one. For example, 'n teast problem 1, density striations
of around 59F will occur without using u'. We note alsc Lthat &P is proportlicnal
to 6P ls axEPxx ana thus is quadratic In nature. The similarity bectween q and u'
is striking. Thec q is an aritificial pressurc which smooths the velocily ficld

while u' i3 an artificial velocity which smooths the pressure field.

4.6 Neighbor selection

The nclhod requires n good selcetion of represcentative neighbors at cach polnt In
time, We have found out that Lh. neighbors whosc bisecteors form Lne vVornol
polygon around the point k are &n excellant choice. The kth Vornol polyiorn s

definod as that reglon of spucc which is noarer point k tnan any other point.

V. SUMMARY

The partial differential Eqo (2.1, 2.2, and 2.3], along with Lhe cauition of
state .M, which deoscribe the time evolution of compreasivle fluid flow can be
golved withoul the use of a Lagranginn mesh. The moethod lollows oxbeddod fluld
points and uscs flinite difference approxima. tons Lo VP ana 0 ‘U Lo update p, u
and ¢. we have demonatrating that the method can accurately caleulate highly
distorted flows withoul diffleulty. The finfto difference avproximations are not

unlque, fmprovoments may be found in the near future. Tha neighbor sclection s



not unique, but the one being used at present appears to o an excellent job.
The method could be directly tended to three dimensions. One drawback to thc
method is it's failure to expliocltly conserve mass, momentum and encrgy. In
fact, at &ny given time, the mass is not defined. We must perform anc¢ auxially
calculation by integrating the density ficld over space to obtain mass, energy
and momentum, However, in all cases where we have done this, we have found the

draft in thesc quantitiea to bo no more than a few present,
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